skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wells, Nicholas G. M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Computationally modeling how mutations affect protein–protein binding not only helps uncover the biophysics of protein interfaces, but also enables the redesign and optimization of protein interactions. Traditional high‐throughput methods for estimating binding free energy changes are currently limited to mutations directly at the interface due to difficulties in accurately modeling how long‐distance mutations propagate their effects through the protein structure. However, the modeling and design of such mutations is of substantial interest as it allows for greater control and flexibility in protein design applications. We have developed a method that combines high‐throughput Rosetta‐based side‐chain optimization with conformational sampling using classical molecular dynamics simulations, finding significant improvements in our ability to accurately predict long‐distance mutational perturbations to protein binding. Our approach uses an analytical framework grounded in alchemical free energy calculations while enabling exploration of a vastly larger sequence space. When comparing to experimental data, we find that our method can predict internal long‐distance mutational perturbations with a level of accuracy similar to that of traditional methods in predicting the effects of mutations at the protein–protein interface. This work represents a new and generalizable approach to optimize protein free energy landscapes for desired biological functions. 
    more » « less